

NEW DRUGS IN HEMATOLOGY


Bologna 1-3 October 2018

SESSION VIII: CHRONIC MYELOID LEUKEMIA PONATINIB

Michele.Baccarani@unibo.it

MILESTONES IN MOLECULAR BIOLOGY OF CML

1960 - Nowell P.C. & Hungerford D.A.

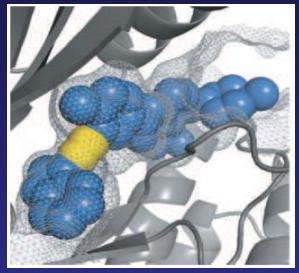
Consequence: new BCR-ABL fusion proteins with a constitutive TK activity

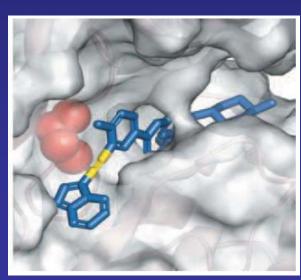
Michele BACCARANI, MD

Professor of Hematology at the Universities of Trieste, Udine, and Bologna

Chairman, CML Working Parties of European LeukemiaNet and GIMEMA

DISCLOSURES


Consultant and speaker, receiving honoraria, from


ARIAD/INCYTE

NOVARTIS

Ponatinib A Pan-BCR-ABL Inhibitor

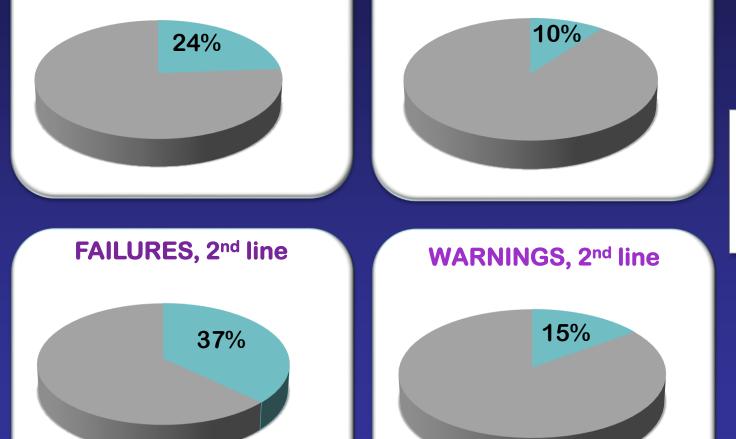
- Rationally designed inhibitor of BCR-ABL
- Active against T315I mutant
 - Unique approach to accommodating gatekeeper residue
- Potent activity against an array of BCR-ABL variants
- Once-daily oral activity
- Half-life ≈ 22 hours
- Also targets other therapeutically relevant kinases:
 - Inhibits FLT3, FGFR, VEGFR and PDGFR, and c-KIT

O'Hare T, et al. Cancer Cell. 2009;16:401-412

Phase 1 Study of Ponatinib Cortes J et al, ASH 2010, Abstract 210, conclusions

- Ponatinib has an acceptable safety profile at therapeutic dose levels......
- Clinical evidence of anti-leukemic activity......
 - CML CP: 66% MCyR, 53% CCyR, 42% MMR
 - CP with T315I: 100% MCyR, 89% CCyR, 78% MMR

Phase 2 Study of Ponatinib (PACE)


Cortes J et al, ASH 2011, Abstract 109, conclusions

IN THIS FIRST ANALYSIS OF THE PIVOTAL PACE TRIAL, PONATINIB HAS A FAVOURABLE EARLY SAFETY PROFILE....

INITIAL RESPONSE DATA AFTER SHORT FOLLOW-UP INDICATE PONATINIB HAS SUBSTANTIAL ANTILEUKEMIC ACTIVITY IN THIS HEAVILY PRETREATED POPULATION, AND IN PATIENTS WITH REFRACTORY T315I

Summary of mutation frequencies in failures and warnings, 1st and 2nd line

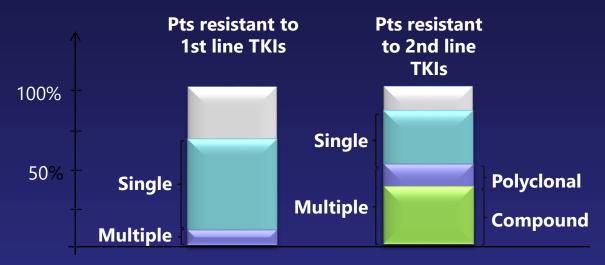
WARNINGS, 1st line

FAILURES, 1st line

Pts positive for BCR-ABL mutations:

by conventional sequencing

Soverini ASH 2015


IN VITRO SENSITIVITY (IC 50) TO TKIS OF THE 10 MORE FREQUENT ABL KD MUTATIONS, and PLASMA CONCENTRATION OF THE TKIS. ALL VALUES ARE nM

MUTATION IMATINIB NILOTINIB DASATINIB BOSUTINIB PONATINIB

M244V	1600-3100	38-39	1.3	147.4	2.2
G250E	1350-20000	48-219	1.8-8.1	179.2	4.1
Y253K	6000-18000	450-1300	1.3-10	NA	6.2
E255K/V	3000-12000	118-566	5.6-13	394	14
T315I	6000-20000	700-10000	137-1000	1900	11
F317L	800-7500	39-91	7.4-18	101	1.1
M351T	900-5000	8-38	1.1-1.6	29	1.5
F359V	1400-1800	91-175	2.2-2.7	38.6	10
L384 M	674-2800	39-41	4	19.5	NA
H396R	1750-5400	41-55	1.3-3	33.7	NA
Cmin	2062±1334	1923±1233	5.5±1.4	392	113± 51
Cmax	4402±1272	2329±772	133±74	268	256±128

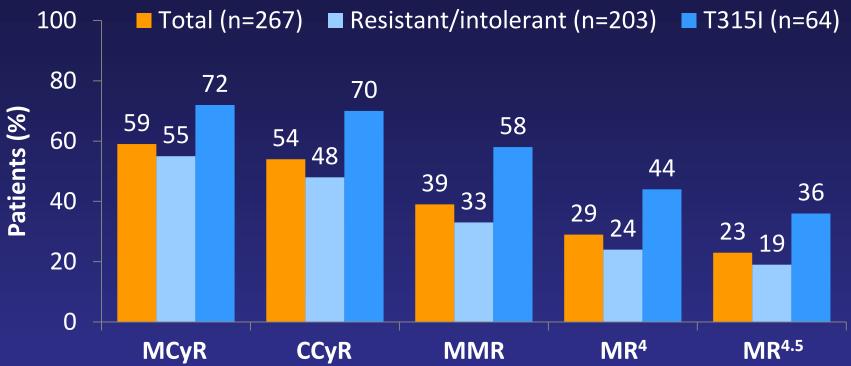
Baccarani M et al, JCO 2009;27:6041-6051, and BLOOD 2013;122(6):872-884

BCR-ABL KD mutations in Ph+ ALL

- High likelihood to acquire TKI-resistant mutations
- High incidence of T315I
- High frequency of highly resistant compound mutants in patients who fail ≥2L of TKI therapy

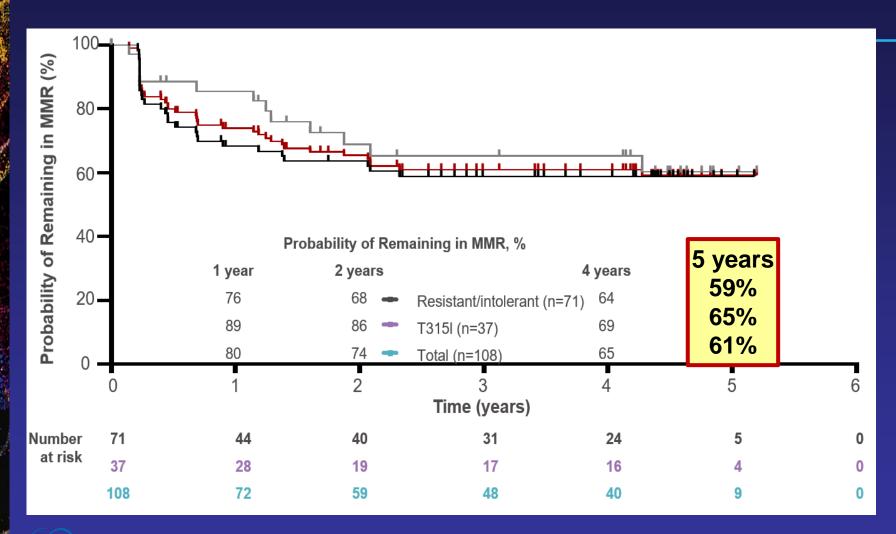
	Mutations in IM-res Ph+ ALL	N and % of
	pts (n=189)	mutated pts
1°	T315I	49 (37.4%)
2°	E255K	25 (18.3%)
3°	Y253H	25 (18.3%)
4°	F359V	6 (4.6%)
5°	G250E	6 (4.6%)
6°	L387M	5 (3.8%)
7°	M244V	5 (3.8%)
8°	M351T	5 (3.8%)
9°	F317L	5 (3.8%)
10°	Q252H	4 (3.1%)

65% in 2nd line TKI-res pts


Importance of BCR-ABL KD sequence surveillance for timely detection of emerging mutations

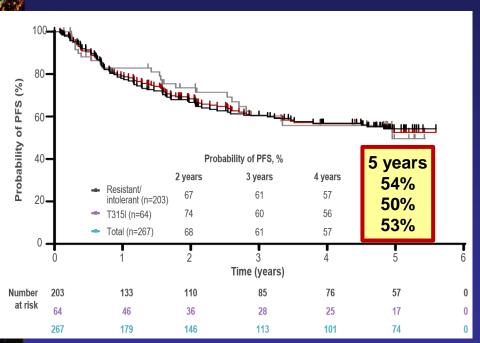
Soverini et al, Cancer 2014

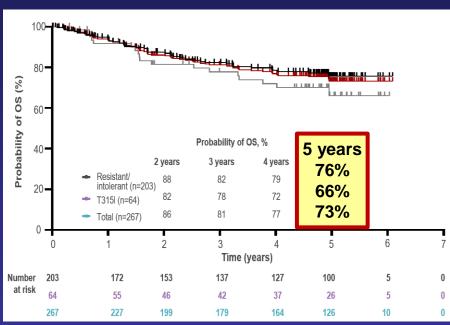
Five-year results of the ponatinib phase II PACE trial in heavily pretreated CP-CML patients


PACE: Response at Any Time in Patients With CP-CML

Response at any time in advanced phase leukemia:

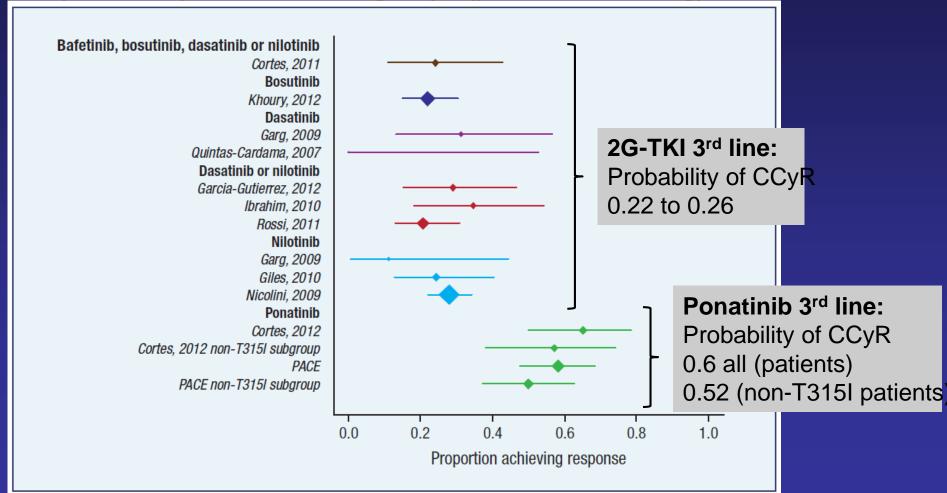
- AP-CML (n=83): MaHR was achieved in 61% of patients, CCyR in 31% and and MMR in 22%
- BP-CML/Ph+ ALL (n=94): MaHR was achieved in 34% of patients, CCyR in 25% and MMR in 12%


PACE: Estimated Duration of MMR



PACE: Estimated PFS and OS

Progression Free Survival



Overall Survival

Responses to 3rd line therapy after resistance or intolerance to 2nd generation TKI

Proportion of patients achieving CCyR (post 2G-TKI setting)

CHRONIC MYELOID LEUKEMIA: THE CHOICE OF SECOND- AND THIRD-LINE TREATMENT

SINGLE ARM STUDIES (VERY FEW IN THIRD LINE)

NO STUDIES COMPARING NILOTINIB, DASATINIB, BOSUTINIB AND PONATINIB. ONLY ONE STUDY COMPARING HIGH DOSE IMATINIB vs DASATINIB

PONATINIB IN 3rd AND 4th LINE IS AS EFFECTIVE AS NILOTINIB, DASATINIB AND BOSUTINIB IN 2nd LINE®

PONATINIB DOSE

IIN THE PHASE 1 STUDY, A DOSE OF 45 mg ONCE DAILY WAS FOUND TO BE VERY EFFECTIVE AND TOLERATED

AT THAT DOSE, THE PLASMA CONCENTRATION (40 nM) OF PONATINIB WAS SUFFICIENT TO CONTROL THE DEVELOPMENT OF ANY MUTATION

A DOSE OF 45 mg ONCE DAILY WAS SELECTED FOR THE PHASE 2 «PACE» STUDY

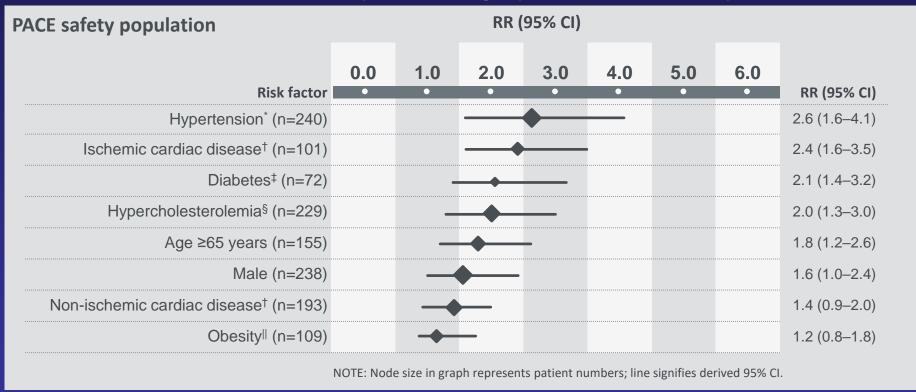
AND ALSO FOR THE PHASE 3 «EPIC» STUDY

BUT, WITH A LONGER FOLLOW-UP OF THE PHASE 2 «EPIC» STUDY.....

PACE study 4-year results: cumulative and exposure-adjusted incidences of AOEs and VTEs*

	CP-CML n=270	
	All grades	SAEs
AOEs, n (%):	77 (29) ^a	63 (23) ^b
Cardiovascular	39 (14)	30 (11)
Cerebrovascular	33 (12)	26 (10)
Peripheral vascular	31 (11)	25 (9)
Exposure-adjusted AOEs, no. of patients with events per 100 patient-years	14.2	10.9
VTEs	13 (5)	12 (4)
Exposure-adjusted VTEs, no. of patients with events per 100 patient-years	2.0	1.8

SAEs=serious adverse events


Cortes et al. J Clin Oncol 34, 2016 (suppl; abstr 7013).

^{*}Categorization of AOEs and VTEs is based on a broad collection of >400 MedDRA preferred terms related to vascular ischemia or thrombosis;

^a41 patients had >1 AOE; ^b25 patients had >1 serious AOE; ^c51 patients had >1 AOE; ^d32 patients had >1 serious AOE.

PACE study 4-year results: baseline risk factors for the development of serious AOEs

Relative risk of serious AOEs by risk category – univariate analysis

Includes medical history, prior concomitant medication, and/or baseline blood pressure gr ≥2. Includes medical history and/or prior concomitant medication, and/or baseline glucose gr ≥2. Includes medical history, prior concomitant medication, and/or baseline triglycerides gr ≥ Includes medical history and/or baseline BMI ≥30 kg/m².

THE AVERAGE CML PATIENT IN EUROPE

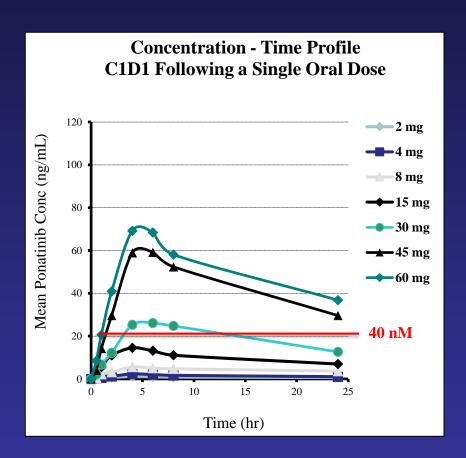
MALE GENDER 54%

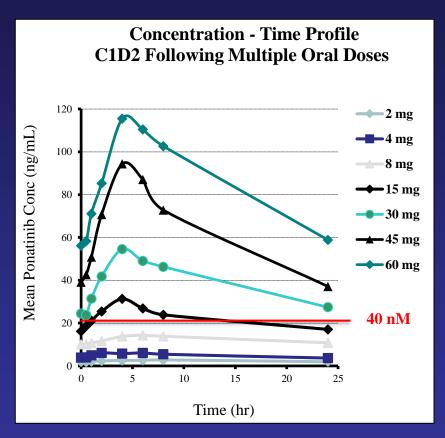
MEDIAN AGE 56 years \geq 70 years old 22%

HIGH RISK (Sokal) 25%

WITH COMORBIDITIES 55%

- Hypertension 26%

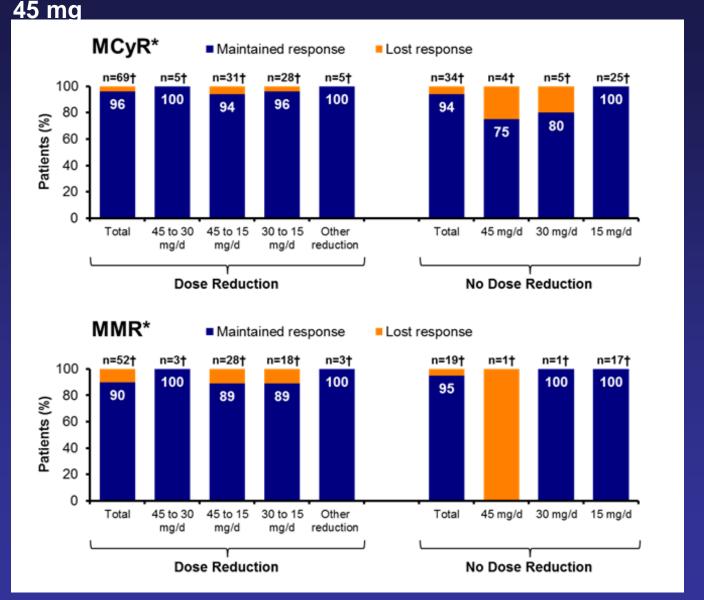

- Cardiovascular disorders 17%


- Diabetes mellitus 10%

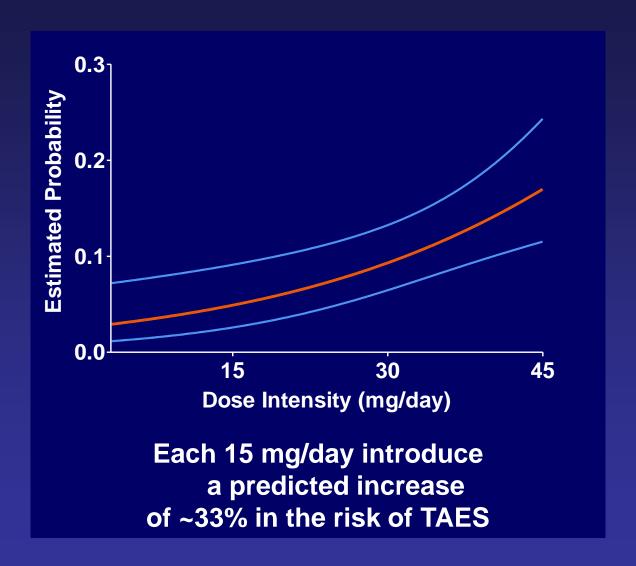
- Smoking 20%

Hoffmann V, Baccarani M, Hasford J, et al. The EUTOS population-based registry: incidence and clinical characteristics of 2094 CML patients in 20 European countries. Leukemia 2015;29(6):1336-1343.

But a plasma concentration of 40 nM is achieved already at a dose of 30 mg



At doses \geq 30 mg


Trough plasma concentrations surpass 40 nM level target

IN THE PACE STUDY, REDUCING THE INITIAL DOSE FROM 45 TO 30 or 15 DID NOT RESULT IN A LOSS OF THE RESPONSE THAT WAS ACHIEVED WITH

^{*}Response maintained as of <u>last response assessment.</u>
†Number of patients with response as of October 10, 2013.

THERE IS A RELATIONSHIP BETWEEN PONATINIB DOSE AND CARDIOVASCULAR TOICITY

PONATINIB DOSE

- THE INITIAL DOSE OF 45 mg MUST BE DECREASED TO 30 AND ALSO 15 mg IN CASE OF TOXICITY
- THE MEDIAN TIME TO MMR IS ABOUT 6 MONTHS, THE MEDIAN TIME TO THE FIRST CV EVENT IS ABOUT 15 MONTHS
- ADJUSTING PONATINIB DOSE WITHIN 6 MONTHS HELPS REDUCING TOXICITY
- PONATINIB DOSE CAN BE DECREASED TO 30 AND ALSO TO 15 mg IN CASE OF OPTIMAL RESPONSE (CCyR or MMR)
- **BUT** MORE DATA ON PONATINIB DOSE AND DOSE ADJUSTMENT ARE CRITICAL FOR THE DEVELOPMENT OF THE DRUG.

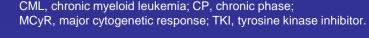
Optimizing ponatinib treatment in CML (OPTIC): dose-ranging study

An international randomized phase 2 trial to characterize the efficacy and safety of a range of ponatinib doses

Adult CP-CML patients resistant to ≥2 TKIs

Primary endpoint: MCvR by 12 months: N=450

1:1:1 randomization


Ponatinib 45 mg once daily*

Ponatinib 30 mg once daily* Ponatinib 15 mg once daily*

Dose reduction to 15 mg once daily upon achievement of MCyR

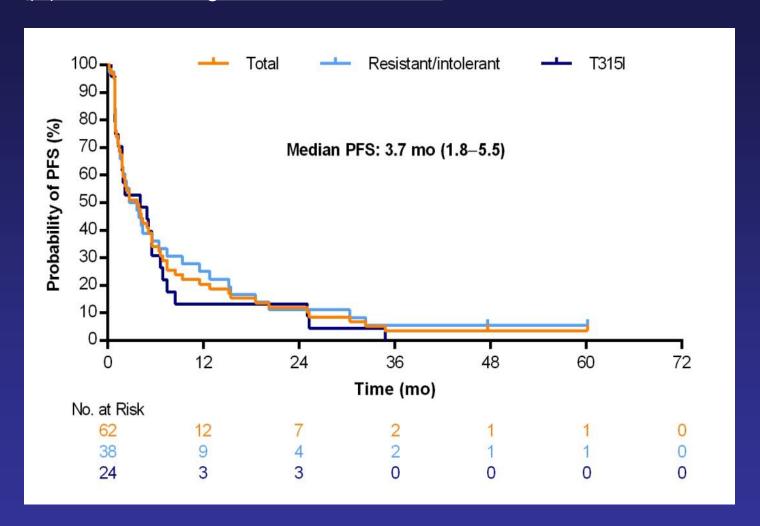
Treatment duration of 24 months

*Dose reductions due to adv

Working Party Leucemia Mieloide Cronica

OPUS Trial

Optimizing Ponatinib USe A GIMEMA phase 2 study of the efficacy and risk profile of ponatinib, 30 mg once daily, in Chronic Myeloid Leukemia (CML) Chronic Phase (CP) patients resistant to imatinib


BACK UP

IC 50 (BIOCHEMICAL ASSAY, nM) FOR BCR-ABL1 (unmutated) AND FOR SOME "OFF-TARGET" TYROSINE KINASES

	BCR-ABL1	PDGFRα	cKit	Src	VEGFR2	ВТК
IMATINIB	678	72	99	1000	10000	10000
NILOTINIB	25	75	209	1000	3720	10000
DASATINIB	1.8	2.9	18	0.1	10000	1.1
BOSUTINIB	42	3.0	10000	3.0	10000	2.5
PONATINIB	0.5	1.1	1.2	5.4	1.5	849

Data from Baccarani M et al, Blood 2013;122(6):872-884

(E) BP-CML: Progression-free survival*

^{*}Progression from BP was defined as death, or increasing blasts in peripheral blood or bone marrow over a 4-week period.

PONATINIB, A SHORT JOURNEY FROM DESK TO BED

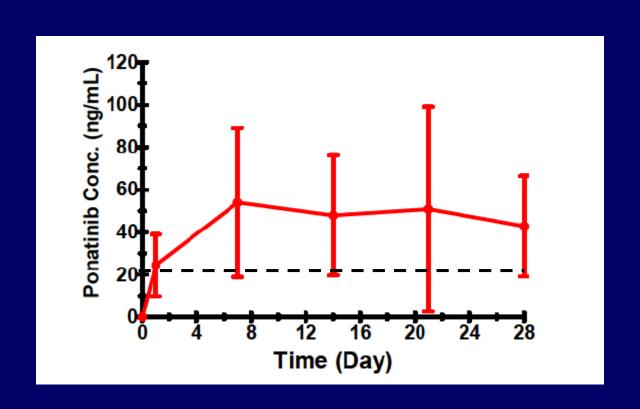
- **2009** AP24534, a pan-BCR-ABL inhibitor for CML, potently inhibits the T315I mutant and overcomes mutation based resistance O'Hare et al Cancer Cell 2009;16:401-412
- 2010 A phase 1 trial of oral Ponatinib (AP24534) in patients with refractory CML and other hematologic malignancies: emerging safety and clinical response findings. Cortes J et al, ASH 2010, abstract 210
- 2012 Ponatinib in refractory Philadelphia chromosome-positive leukemias Cortes J et al, NEJM 2012;367:2075-2088
- 2012 A pivotal phase 2 trial of Ponatinib in patients with CML and Ph+ ALL resistant or intolerant to dasatinib or nilotinib, or with the T315I mutation: 12-month follow-up of the PACE trial Cortes J et al, ASH 2012, abstract 163
- **2013** A phase 2 trial of Ponatinib in Philadelphia chromosome-positive leukemias Cortes JE et al, NEJM 2013;369:1783-1796

PONATINIB: A LONG CLINICAL JOURNEY

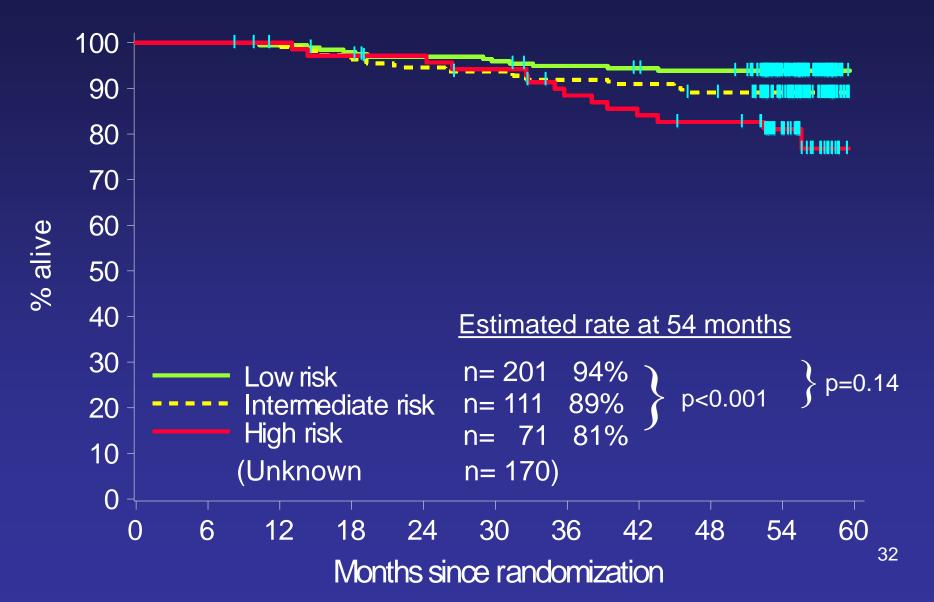
- 2012 December 14, FDA accelerated approval of Iclusig (Ponatinib) for patients with CML and Ph+ ALL resistant or intolerant o prior tyrosine kinase inhibitor therapy
- 2013 January, EMA approval of Iclusig for patients with CP CML resistant or intolerant to dasatinib or nilotinib, for whom subsequent treatment with imatinib is clinically inappropriate; or with the T315I mutation
- 2013 October 10, EPIC study prematurely terminated
- 2013 October 30, FDA requests to suspend marketing of Iclusig
- **2013** December 6 and 20, EMA and FDA require new safety measures to address the risk of life-threatening vascular adverse events
- 2014 January 2, ARIAD resumes marketing Iclusig,
- 2014 on Dose adaptation studies

THE REGISTERED (APPROVED) DOSE OF TKIS

DRUG	APPROVED/RECOMMENDED DOSE			
	INITIAL	"MAXIMAL"	"MINIMAL"	
GLIVEC	400 x 1	400 x 2	300 x 1	
SPRYCEL	100 x 1	140 x 1	50 x 1	
TASIGNA	300 x 2	400 x 2	400 x 1	
BOSULIF	500 x 1	600 x 1	400 x 1	
ICLUSIG	45 x 1	45 x 1	15 x 1	


HAS THE RECOMMENDATION OF A DOSE ANY SENSE?
YES, TO ENSURE EFFICAY AND TO PROTECT FROM TOXICITY

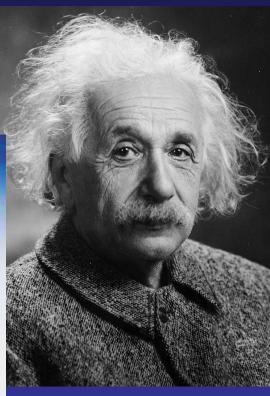
USUALLY THE DOSE CAN BE INCREASED FOR BETTER EFFICACY AND CAN BE DECREASED IN CASE OF TOXICITY (TO SOME EXTENT)


BUT WHY THE DOSE COULD OR SHOULD NOT BE DECREASED IN CASE OF OPTIMAL RESPONSE, SO AS TO MAINTAIN EFFICACY AND TO REDUCE TOXICITY?

THE DOSE OF PONATINIB CAN (MUST) BE ADAPTED TO EFFICACY (TO BCR-ABL1 LEVEL)

45 mg/die: INTERPATIENT PLASMA PONATINIB CONCENTRATION IS HIGHLY VARIABLE

IRIS: Overall Survival by Sokal Group in Patients on First-line Imatinib



THE PLAYERS FOR CML

The patient
The doctor
The good scientist
The Pharma

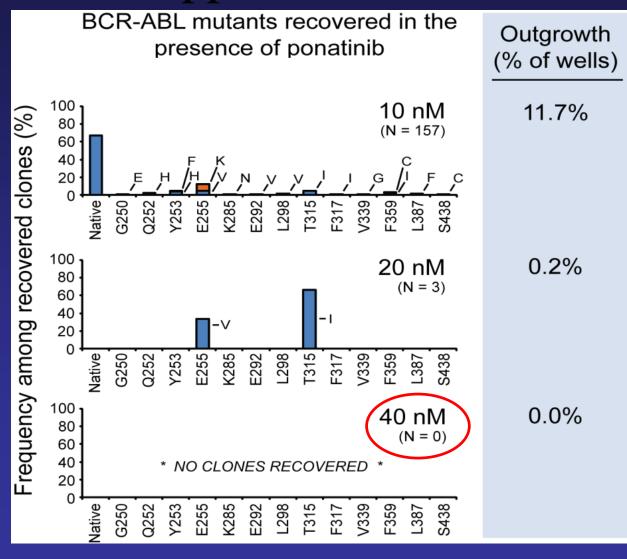
Outcome upon treatment with 2nd line 2nd generation TKI after failure of imatinib

	Dasatinib 100mg QD	Nilotinib 400mg BID	Bosutinib 500mg QD
Patients (n)	167	321	288
Median age (years)	56	58	53
Imatinib resistance/intoleranc e	74%/26%	70%/30%	69.5%/30.5%
Minimum follow-up	24 months	24 months	24 months
Best CCyR rate	50%	44%	48%
Best MMR rate	37%	28%	35%
24-months PFS*	80%	64%	81%
24-months OS	91%	87% *PFS definit	91% tion variations from a study to anothe

A Phase 1 Trial of Oral Ponatinib (AP24534) in Patients with Refractory Chronic Myelogenous Leukemia (CML) and Other Hematologic Malignancies: Emerging Safety and Clinical Response Findings

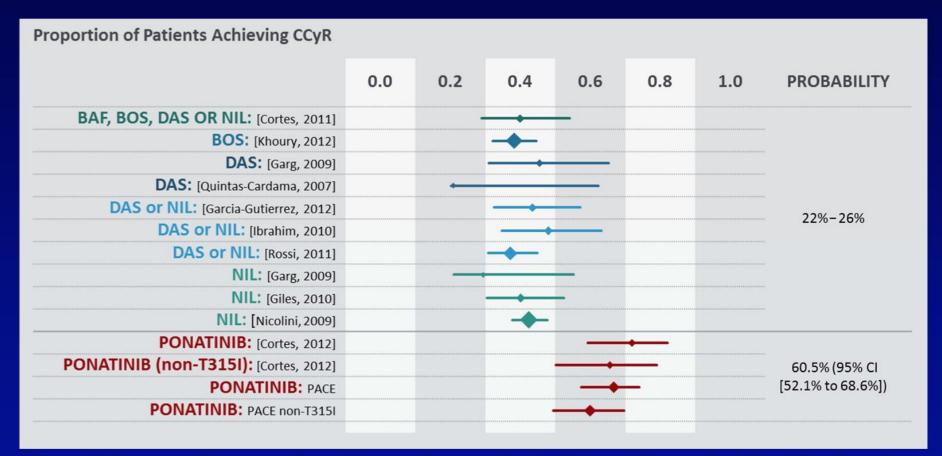
Abstract 210: ASH 2010, Orlando, FL

J Cortes, M Talpaz, D Bixby, M Deininger, N Shah, I Flinn, M Mauro, T O'Hare, S Hu, R Kan, V Rivera, T Clackson, FG Haluska, and H Kantarjian


Initial Findings from the PACE Trial: A Pivotal Phase 2 Study of Ponatinib in Patients with CML and Ph+ ALL Resistant or Intolerant to Dasatinib or Nilotinib, or with the T315I Mutation

Abstract 109: ASH 2011, San Diego, CA

J Cortes, D-W Kim, J Pinilla, P le Coutre, C Chuah, F Nicolini, R Paquette, J Apperley, J DiPersio, HJ Khoury, D Rea, M Talpaz, DJ DeAngelo, E Abruzzese, M Baccarani, MC Mueller, C Gambacorti-Passerini, S Wong, S Lustgarten, CD Turner, V Rivera, T Clackson, F Haluska, and HM Kantarjian on behalf of the PACE Investigators


AT 30 mg ONCE DAILY THE PLASMA TARGET CONCENTRATION OF 40nM IS REACHED

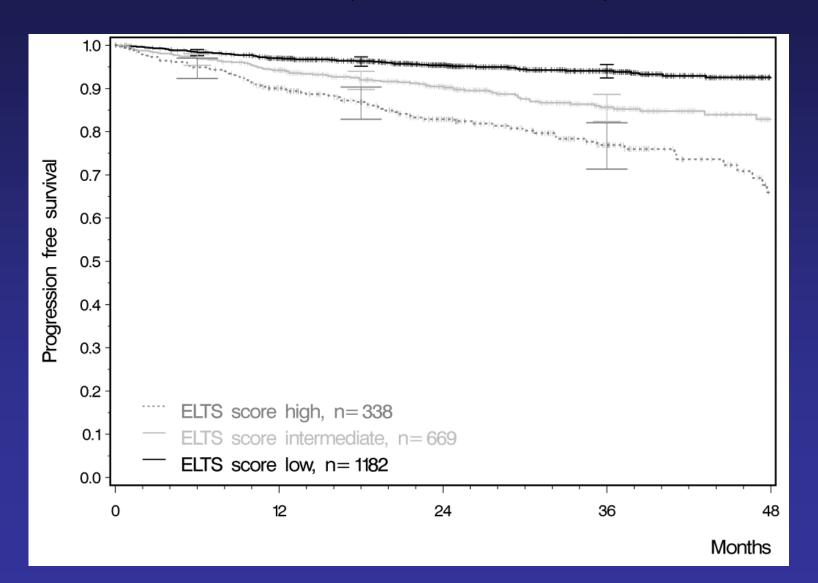
Suppression of Mutant Outgrowth

- Cells exposed to increasing ponatinib concentrations
- BCR-ABL resistance mutations completely suppressed at 40 nM
- 40 nM target trough plasma ponatinib concentration
- 40 nM attained at doses ≥30 mg

Systematic Review of CP-CML Patients in Third-line Setting: Response to Ponatinib Was Superior to Other TKIs

These data suggest sequencing of second-generation TKIs may be a suboptimal treatment approach

NOTE: Node size in graph represents patient numbers; line signifies derived 95% confidence interval.


AF=bafetinib; BOS=bosutinib; DAS=dasatinib; NIL=nilotinib.

Lipton et al, *Blood*. 2013;122(21) (abstr 4010).

OUT OF 100 NEWLY DIAGNOSED PATIENTS, 10-20% ARE HIGH RISK OR ALREADY IN ACCELERATED OR BLASTIC PHASE

WE NEED TO DESIGN AND TO TEST THE STRATEGIES OF TREATMENT OF HIGH RISK PATIENTS AND OF THE PATIENTS NEWLY DIAGNOSED IN ACCELERATED OR BLASTIC PHASE

The EUTOS Long Term Survival score Pfirrmann M et al, Leukemia 2016;30:48-56

HIGH RISK PATIENTS

MAJOR MOLECULAR RESPONSE (MMR) and COMPLETE CYTOGENETIC RESPONSE (CCyR) AT 12 MONTHS IMATINIB, NILOTINIB, DASATINIB

DRUG	STUDY	Reference	No.pts	MMR%	CCyR%
IMA 400	DASISION	Kantarjian NEJM 2010	50°	16	64
IMA 400	ENESTnd	Saglio NEJM 2010	78	17	48
IMA 400	TOPS	Cortes ICO 2008	42	26	62
IMA 400	ELN	Baccarani Blood 2009	108	33	58
IMA 400	IRIS	Hughes NEJM 2003	71	38	49
IMA 800	TOPS	Cortes JCO 2008	75	40	63
IMA 800	ELN	Baccarani Blood 2009	108	40	64
				• •	
DAS 400	DASISION	Kantarjian NEJM 2010	49	31	64
NIL 600	ENESTnd	Saglio NEJM 2010	78 •	41	74

ITALIAN GUIDELINES (PROVISIONAL)

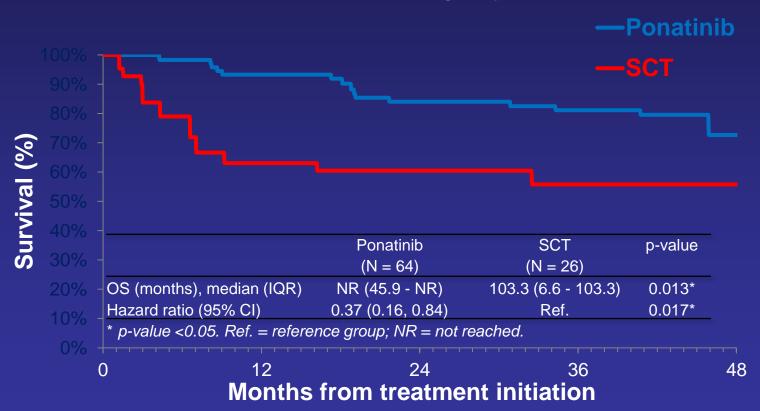
BASELINE EVALUATION, ALL PATIENTS

- CV/CeV EVENTS, personal (current and previously) and in 1st grade rel
- AGE and WEIGHT
- LIFE STYLE
- PRIOR THERAPY WITH CARDIOTOXIC DRUGS
- EDINBURGH CLAUDICATION QUESTIONNAIRE
- PHYSICAL EXAMINATION (central and peripheral arterial pulses)
- BLOOD PRESSURE
- SCREENING FOR DIABETES MELLITUS (glicemia, HbA1C)
- SCREENING FOR DYSLIPIDEMIA (cholesterol, LDL, HDL, tryglicerides)
- ECG
- SYSTEMATIC CORONARY RISK EVALUATION (SCORE)
- (ECHOCARDIOGRAPHY?)
- (ANKLE BRACHIAL INDEX ?)
- (NATRIURETIC HORMONE "B-type"?)
- (FIBRINOGEN, CRP, OMOCYSTEIN,?)

ITALIAN GUIDELINES PROVISIONAL

CHOLESTEROL LEVEL CONTROL

LDL < 100 mg/dl (< 2.50 mmol/l) always < 70 mg/dl (< 1.75 mmol/l) in "high risk" patients at least < 50% of baseline in familiar dyslipidemia


Recommended drug: atorvastatine

BLOOD PRESSURE AND DIABETES CONTROL

as required, according to guidelines

Overall survival with ponatinib *versus*Allo-SCT in patients with CP-CML and T315l mutation

Post hoc, retrospective, indirect comparison of OS among patients who received ponatinib (PACE trial) with those who underwent allo-SCT (EBMT registry).

